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SUMMARY

The objective of this work is to develop a sliding interface method for simulations involving relative grid
motion that is fast and efficient and involves no grid deformation, remeshing, or hole cutting. The method
is implemented into a parallel, node-centred finite volume, unstructured viscous flow solver. The rotational
motion is accomplished by rigidly rotating the subdomain representing the moving component. At the
subdomain interface boundary, the faces along the interface are extruded into the adjacent subdomain to
create new volume elements forming a one-cell overlap. These new volume elements are used to compute
a flux across the subdomain interface. An interface flux is computed independently for each subdomain.
The values of the solution variables and other quantities for the nodes created by the extrusion process are
determined by linear interpolation. The extrusion is done so that the interpolation will maintain information
as localized as possible. The grid on the interface surface is arbitrary. The boundary between the two
subdomains is completely independent from one another; meaning that they do not have to connect in a
one-to-one manner and no symmetry or pattern restrictions are placed on the grid. A variety of numerical
simulations were performed on model problems and large-scale applications to examine conservation of
the interface flux. Overall solution errors were found to be comparable to that for fully connected and
fully conservative simulations. Excellent agreement is obtained with theoretical results and results from
other solution methodologies. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Time accurate prediction of flow fields about geometries in relative motion is of great interest.
Practical applications include turbomachinery, helicopters, tiltrotors, and ship propellers. Liu and
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508 E. L. BLADES AND D. L. MARCUM

Hill [1] conducted an investigation comparing three approaches for simulating the unsteady flow
of a centrifugal compressor, including the Frozen Rotor model, Circumferential Average model,
and a sliding mesh model. They concluded that although the sliding mesh model is compu-
tationally more intensive, it is the necessary approach to predict the inherently unsteady flow
field because only the sliding mesh model was capable of simulating the aerodynamic interac-
tion due to the impeller rotation relative to either the upstream guide inlet vanes or downstream
discharge vanes.

Three main approaches have been devised to treat moving bodies or grids with relative
motion for unstructured grids. One approach is to remesh the domain, either locally or the entire
domain [2]. Even if confined to a local portion of the domain, the remeshing procedure can become
computationally expensive, particularly for unsteady simulations that may take several revolutions
to establish periodicity. Another is to deform the grid in response to the relative motion of the
body [3, 4]. Depending upon the motion, the grid movement may eventually deteriorate the grid
quality and remeshing all or part of the domain becomes necessary. Both remeshing and grid
deformation allow fully general motion of the components. However, for a third approach, a large
class of problems, like those considered herein, the direction of relative motion of the components
is known a priori. Most rotating machinery simulations, including axial and centrifugal turboma-
chinery, mixing tanks, ship and aircraft propellers, etc. fall into this class of problems. Thus for
the third approach, the remeshing can be avoided and the grid motion can be accomplished by
decomposing the domain into subdomains which move relative to one another along judiciously
chosen boundaries or interfaces. In this last approach, the problem then becomes how to couple
the two subdomains across the chosen boundary or interface.

2. INTERFACE METHODS

There has been much attention devoted to this coupling of subdomains at an interface, even for
problems that do not involve relative grid motion. In the Chimera or structured composite overset
approach [5], the discretization is comprised of a system of component grids and background grids.
The grid components are not required to align with neighbouring components in any special way,
can overlap one another, and there is generally a multiple cell overlap. Valid Chimera holes must be
cut in each grid within regions that overlap with other grid components, solid bodies, or any other
non-flow regions. The Chimera holes serve to identify active and non-active parts of the overall
grid. Interpolation stencils have to be created for all inter-grid boundary points. Identification of the
interpolation stencil involves a search for donor cells for all points that lie along the Chimera hole
boundary. At the inter-grid boundaries, a non-conservative interpolation is typically used to transfer
information across the interface. Meakin [6] showed that the formal order of accuracy is maintained
with a non-conservative Chimera approach using simple interpolation. Overset grid topologies have
been successfully applied to geometrically complex configurations involving moving bodies and
relative grid motion [7, 8]. For these types of problems, the hole cutting and donor cell identification
must be done each time the grid changes and can be computationally expensive. Research has
recently begun to develop a conservative interface for Chimera grids [9, 10]. Wang et al. [9] show
that on a sufficiently fine mesh, a conservative Chimera and a non-conservative Chimera scheme
using simple interpolation converge to the same solution.

Nakahasi et al. [11] and Löhner et al. [12] have extended the structured overset or Chimera
approach to unstructured topologies to treat problems with moving bodies and relative grid
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motion. The same hole cutting and donor cell identification procedures as previously discussed are
required, but implemented on an unstructured topology. Initially the approach was implemented
for inviscid simulations and later extended to viscous simulations [13, 14]. Similar to the structured
overset approach, the unstructured approach is not conservative across the inter-grid boundaries.
Zhang et al. [15] have proposed a combination of the previous two approaches: an unstructured
overset method that combines grid movement and remeshing. Once the holes have been cut in the
overlapping regions, instead of the inter-grid interpolation, the grid is locally remeshed in the hole
regions to maintain conservation. However, due to changes in the grid from one time step to the
next, the method is not strictly conservative as will be discussed further in the UVI method. In
addition to the expense of identifying the holes, the method also incurs the additional expense of
remeshing.

Compared to sliding grid techniques for structured grid topologies, the sliding interfaces for
unstructured grids are more complex because of the explicit data structure required for connectivity.
Even though the grids do not have to align along the subdomain interface boundaries for structured
grids, the interpolation is relatively easy to implement due to the implicit connectivity data structure.
Unstructured grids, however, result in interfaces that are also unstructured and therefore the interface
communication procedures are more complex. Pan et al. [16] developed a sliding grid approach
suitable for inviscid computations with global flux conservation across subdomain interfaces. The
approach is similar to the structured patch grid approach, but for use in an unstructured solver.
The drawback to this method is that certain symmetry restrictions are placed on the grid interface
in order to maintain global conservation. Yu et al. [17] used a sliding interface on a hybrid
unstructured grid for a rotor-stator analysis that imposes even further restrictions; requiring that
the subdomain grids exactly align at the interface at all time steps. Since the grids at the interface
match identically, no interpolation is required. However, the spacing at the interface is dictated
by the time step and a change in the time step requires remeshing of the interface region. Both
of these approaches defeat one of the main advantages of an unstructured approach, namely the
flexibility to handle complex geometries.

Mathur [18] has developed a more general sliding interface for unstructured grids that imposes
no restriction on the node placement of the subdomain boundary interfaces and is also conservative.
The method takes advantage of the cell-centred scheme for which it is implemented and requires
no interpolation across the interface. The overlapping faces at the interface surfaces are replaced
by a new set of faces formed by their intersections such that each new face has a unique cell
neighbour on the opposite side. However, the method is restricted to sliding boundaries that are
cylindrical or conical surfaces of revolution.

An unstructured method for node-centered schemes was developed by Sreenivas et al. [19] for
tilt-rotor simulations. This method, referred to as the UVI method, employs local grid reconnection
to enable relative grid motion. For example, to simulate a rotating propeller, a surface or interface
is created to divide the domain into two subdomains: an inner domain representing the propeller
and an outer domain representing the rest of the domain of interest. To simulate the motion of
the rotating propeller, the cells attached to either the inside or the outside of the interface are
deleted, thus leaving a void in the domain. Next, the inner subdomain representing the propeller
is rotated as a rigid unit into the desired orientation. Then a local reconnection process [20] is
performed to re-generate the deleted cells in order to merge the two subdomains, resulting in one
continuous domain. The domain is continuous in the sense that the two subdomains are merged
together sharing a common set of nodes at the interface boundary. The UVI method, in principle,
is an unstructured implementation of the localized grid distortion and clicking method introduced
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by Janus [21]. The local-reconnection process reconnects the distorted grid lines at the interface,
and the inner grid is essentially clicked into place.

Despite the fact the domain is continuous at the interface boundary, the approach is not strictly
conservative. Venkatakrishnan andMavriplis [22] point out that after the local-reconnection process,
the solution, which is stored at the node locations, needs to be modified to satisfy the conservation
in time requirement since the control volumes for the nodes or points involved in the reconnection
may have changed discontinuously from the previous time level. They proposed a conservative,
linearity-preserving interpolation procedure to modify the solution to account for the change in
connectivity as well as other possible approaches to update the solution. However, for the UVI
method as currently implemented in this work, no adjustments are made to the solution after the
reconnection process to account for the change in connectivity.

A limitation with the current implementation of the UVI method is that the grid reconnection
can only be done in isotropic regions of the grid, and cannot include any physical boundaries.
This may require that the geometry be cut and a gap created to allow the UVI surface to pass
through the boundary surface. This gap creates a void in the physical boundary of the surface
that is now part of the flow field. Thus, during the volume grid generation process, a volume grid
will be generated within the gap. If the gap required by the UVI method is aligned with the free
stream, the flow through this gap can pose numerical problems, particularly in supersonic flows.
This reconnection limitation is an implementation issue of the reconnection process that can be
resolved.

Another limitation for the UVI method is that the local reconnection grid generation process is
currently a serial process and therefore utilizes only a single CPU. The overall unstructured grid
generation process could be implemented to work in parallel. However, the local-reconnection of
a thin layer about a UVI domain is not highly parallelizable. In a parallel computing environment,
this creates a bottleneck by forcing all the remaining processors to remain idle and wait on a
single processor to perform the local reconnection. This can significantly increase the run-time for
simulations involving relative grid motion. In addition, since it is a serial process running on a
single CPU, there are memory restrictions that limit the resolution of the UVI surface. To minimize
the modification to the geometry, it is obviously desired to make the gap as small as possible.
For the reconnection process to work best, the elements inside the gap should be nearly isotropic,
which requires the grid spacing in the region of the gap to be approximately half the width of
the gap. Thus, additional resolution is wasted on a part of the numerical domain that is not even
present in the physical domain.

3. SOLUTION ALGORITHM

Before discussion of the sliding interface method, an overview of the unstructured flow solver
into which it is implemented is presented. Both the UVI and sliding interface methods were
implemented in the MSU U2NCLE unstructured flow solver [23]. U2NCLE is a parallel flow
simulation code that solves the unsteady Reynolds-averaged Navier–Stokes equations for complex
geometries represented by multi-element unstructured grids. U2NCLE can solve inviscid, laminar,
and high Reynolds number flows for either steady or unsteady conditions in compressible or
incompressible flows.

The flow solver, unstructured unsteady computation of field equations (U2NCLE), is a node-
centered, finite volume, implicit scheme applied to general unstructured grids with non-simplical
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elements. The flow variables are stored at the vertices and surface integrals are evaluated on the
median dual surrounding each of these vertices. The non-overlapping control volumes formed by
the median dual completely cover the domain, and form a mesh that is dual to the elemental grid.
Thus, a one-to-one mapping exists between the edges of the original grid and the faces of the
control volumes.

The solution algorithm consists of the following basic steps: reconstruction of the solution
states at the control volume faces, evaluation of the flux integrals for each control volume, and the
evolution of the solution in each control volume in time.

For the numerical solutions conducted herein, the inviscid fluxes at each face of the control
volume are evaluated using the flux-difference splitting technique of Roe [24]. The algebraic flux
vector is replaced by a numerical flux function which depends on the reconstructed data on each
side of the control volume face:

�= 1
2 (F(QL) + F(QR)) − 1

2 Ã(QR − QL)

where Q is the dependent variable vector for the conservative variables Q = [� �u �v �w E]T
and Ã= R̃�̃R̃−1. The matrix R̃ is a matrix constructed from the right eigenvectors of the flux
Jacobian matrix, �G/�Q, and �̃ is a diagonal matrix whose entries contain the absolute values
of the flux Jacobian matrix. The ( ·̃ ) quantities are constructed with variables using the Roe
averaging procedure. A higher order spatial method is constructed by a 2nd-order reconstruction
(extrapolation) of the data on either side of the control volume face

q f =q0 + �∇q0 · r
where q f is the reconstructed function, ∇q0 is the gradient of primitive variables at the vertex,
r is the vector from the vertex to the midpoint of the edge, and � is a slope-limiting function.
The Barth–Jesperson limiter is applied to these terms to prevent oscillations and overshoots in the
numerical solution [25]. The one-equation turbulence model of Spalart and Allmaras was used for
simulation of turbulent effects in high Reynolds number flows [26].

The temporal discretization is done using a backward Euler implicit scheme

(1 + �)V n+1�Qn − �V n−1�Qn−1

�t
+ Qn

⎡
⎢⎣

�V n − �

1 + �
�V n−1

�t

⎤
⎥⎦ + Rn+1 = 0

where V is the volume of the control volume, Q is the integral average over the control volume,
�t is the time step, and � is a parameter that controls the temporal order of accuracy. For a second-
order scheme �= 1

2 and for a first-order scheme �= 1. The divergence term in brackets in the
preceding equation is a temporal discretization of the change in the volume of the control volume
and represents the geometric conservation law (GCL). A Newton iterative time evolution scheme
is employed to advance the unsteady solution at each time step which linearizes the equations
about a given time level and results in a linear system of equations that must be solved [27]

�L(Qn+1,m)

�Q
�Qn+1,m = −L(Qn+1,m)
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where m is the Newton iteration index and �Qn+1,m = Qn+1,m+1−Qn+1,m . L is a vector function
given by

L(Qn+1) = (1 + �)V n+1�Qn − �V n−1�Qn−1

�t
+ Qn

[
(1 + �)�V n − ��V n−1

�t

]
+ Rn+1

Multiple Newton iterations are used to rid the solution of time linearization error at a given time
step. A bidirectional Gauss–Seidel solution algorithm is used to solve the resulting linear system.

For quick turnaround time in a design environment, it is essential to parallelize the flow solution
algorithm. The present parallel unstructured viscous flow solver is based on coarse-grained
domain decomposition for concurrent solution within subdomains and each is assigned to a unique
processor. The solver employs MPI message passing for inter-processor communication.

4. SLIDING INTERFACE METHOD

The objective of this work is to develop a sliding interface method [28, 29] that is fast, efficient
and addresses some of the previously described limitations for simulations involving relative grid
motion. To achieve these objectives, an approach that involves no grid deformation, remeshing,
or hole cutting is used. The rotational motion is accomplished by rigidly rotating the subdomain
representing the moving component, which is similar to the UVI and structured patch and overlaid
methods. The sliding interface method does not impose any restrictions on the subdomain interface.

Since the grid at the interface is arbitrary, the grids on either side of the interface do not align
and thus the subdomains are discontinuous. There are two main issues that must be addressed
in order to compute the flow across the disjoint subdomain interface: (1) how to compute a flux
across the subdomain interface and (2) how to couple the subdomains in the solution process.

4.1. Sliding interface construction

Each subdomain boundary interface is extruded to form part of the sliding interface. Both subdo-
main interfaces are extruded and overlap in the region near the interface. In 3-D, triangular faces are
extruded into prisms and quadrilateral faces into hexahedral elements. This is shown conceptually
for a 2-D interface in Figure 1 where the edges on the interface are extruded into quadrilateral
elements. For purely notational reasons, one subdomain interface is denoted the primary interface
and the other the secondary interface. The one with the finer grid resolution is typically denoted the
primary interface. The elements and nodes that are created by the extrusion are denoted as ‘sliding’
elements and ‘sliding’ nodes, respectively. These sliding elements close the control volumes for
the nodes on the interface and behave just as interior control volumes. With the control volume
closed, a flux can be computed.

The extrusion distance is based on a local measure of the element sizes of the domain being
extruding into. A distance metric for each node on the interface is computed as

d = �

n

∑
i∈F

√
(xcell − xface)2

where F is the set of all faces attached to the node, xface is the face centroid attached to the node,
xcell is the cell centroid of the cell directly atop face i, n is the number of faces attached to the
node, and � is a multiplier. A local distance metric is used because the conservation error is of the
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Primary Secondary

Physical Node

Sliding Node

Sliding Element

Interface

Figure 1. Two-dimensional overlapping sliding interface.

same order of the base conservative scheme if the length of the overlapped region is proportional to
the grid spacing [9]. However, this metric provides a local measure of the cell size for the domain
being extruded from. In order to keep the information as localized as possible, information about
the cell size of the neighbouring subdomain is needed. This is accomplished by an information
exchange. For example, for a node on the primary interface, the distance metric information is
exchanged with the closest node on the secondary interface, and vice versa. After the information
exchange, the actual extrusion distance for a node on the primary interface is one half the local
distance metric of the closest node on the secondary surface and vice versa.

Since a flux across the interface needs to be computed, it is important to obtain the information
to compute that flux from nodes as close as possible to the interface, and thus the need for the
information exchange to get the extrusion distance based on the domain being extruded into. Note
that in general when computing a flux for a face, the information used in the evaluation is local
and obtained from surrounding nodes and thus the reasoning for keeping the extrusion close to
the interface. For example, if the element size in one subdomain were significantly larger than
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the neighbouring subdomain, then simply using the distance metric computed for the node would
lead to an extrusion distance that might span multiple elements in the neighbouring subdomain.
In addition to obtaining information farther away from the interface, this would also allow for the
possibility of an extruded element lying inside a solid boundary if one were near the interface.
In the vast majority of cases, the procedure described above leads to the extruded elements lying
within the elements immediately adjacent to the interface in the neighbouring subdomain.

The closest node information serves as the basis for coupling the interfaces together and provides
the locality information to couple the disjoint subdomains. The closest node information is found
using a recursive-box algorithm and it has been implemented to work in a parallel computing
environment since the closest node may reside in another block. For every node on the primary
interface surface, the nearest node on the secondary surface is found and vice versa.

For nodes in the isotropic regions of the grid, the extrusion direction is based on the local node
normal. However, special consideration is given when extruding into boundary layers. If the local
node normal was used and the interface surface did not align with the high aspect ratio boundary-
layer grid as shown in Figure 2(a), then the sliding element would span multiple elements in the
neighbouring subdomain. This would again lead to using inconsistent or non-local information
when computing the flux across the control volume boundaries. Instead, the extrusion direction is
computed so it will align with the boundary-layer grid of the neighbouring subdomain, as shown
in Figure 2(b), to ensure the information used to compute the flux will be as local as possible.

The extrusion direction is taken to be tangential to the boundary layer elements of the domain
being extruded into. For a point on the primary surface, a surface search is performed to find the

Interface

Interface

Extrusion
Direction

Extrusion
Direction

(a)

(b)

Figure 2. Boundary-layer extrusion direction based on: (a) the local node normal; and (b) adjacent
subdomain boundary-layer element information.
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containing face on the secondary surface and vice versa. The extrusion direction is the direction
from the centroid of the containing face to the centroid of the element sitting directly atop the
containing face. Another available option for the extrusion direction is that it be parallel to the
extrusion direction of the closest boundary node. For a given interface surface, the nearest boundary
node is found using the recursive-box algorithm for nodes in the boundary layer. The first option
is used for the results presented in Section 6.

Where the interface intersects boundary surfaces, such as a far-field boundary or a solid wall,
the interface edges along the boundary are extruded into quadrilateral faces. These extruded faces
will then have the same boundary condition applied of the face that it overlaps in the neighbouring
subdomain in order to make the appropriate boundary contribution to the flux evaluation for
the node on the interface. A fast ray–triangle intersection algorithm is used to determine which
boundary face the node should be projected in order to ensure the extrusion direction of the
boundary edges are tangent to the neighbouring subdomain boundary [30].

The sliding interface may be constructed every time step using the previously described procedure
or, to minimize computational costs, created only once during a preprocessing step. In which case,
the extruded interface is rotated into place each time the grid is moved and there is no updating
of the local extrusion distance or extrusion direction vector. This is appropriate if the grid spacing
on the interface is nearly uniform in the circumferential direction. For the results of the large scale
application presented in Section 6, the sliding interface is reconstructed every time step. For the
model validation problems present in Section 5, there is no relative grid motion and the interface
were constructed only once at problem setup.

4.2. Search algorithm and interpolation

The key for this approach to work efficiently in a parallel computing environment is the search
algorithm. A search is performed to find the containing or host element of the sliding nodes in
order to interpolate the needed quantities for the sliding node. For grids in relative motion to one
another, the grids at the interface are changing every time step and thus the sliding nodes host
element changes and a search is required. Note that a search is required for every extruded point,
or sliding node, on the interface. The parallel search algorithm uses multiple passes of a volume
coordinate search algorithm (or area coordinate search if a point lies on a surface) until all points
are found. The basic strategy of the volume search algorithm (and corresponding surface search
in 2-D) is based on the neighbouring element algorithm [31]. During the course of the search for
a point, should the search algorithm attempt to move across a (parallel) block boundary, the point
is transmitted to the appropriate block and the search is continued. To speed the volume search,
a good starting location for each point is chosen so that the host element is found in one or two
steps. The starting location is taken to be one of the elements attached to the closest node. Using
this procedure, the majority of the points are found on the first pass, and only a few (the ones that
are near or on block boundaries) require a second pass.

The basis functions for tetrahedral elements can be conveniently expressed using volume coor-
dinates; and note that for a tetrahedral element, the number of nodes and faces are equal. Volume
coordinates are the volume ratios of the sub-tetrahedra formed by connecting the nodes of each
face to the search point. For non-simplical elements, the element is subdivided into tetrahedra to
compute the face-based basis functions needed for the search.

Except for the coordinates of the sliding nodes, all quantities are interpolated. The interpolation
is done using the nodal values of the host element and weighting functions. For tetrahedral
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elements, finite element isoparametric shape functions are used. Given the containing element and
coordinates of the sliding grid point, the shape functions can be easily computed. However for the
non-simplical elements, computing the shape functions requires the solution of a cubic polynomial
and can be computationally expensive. Instead for the pyramid, prism, and hexahedral elements,
inverse distance weighting functions are used. The value of the desired quantity for the sliding
interface node is interpolated using the weighting functions and the values of the quantity at the
nodes of the containing element. With the weighting functions computed, the value of the desired
quantity for the sliding interface node is interpolated via

û =
n∑
j=1

� j u j

where the û is the interpolated quantity, � j are the finite element shape functions or weighting
functions for the containing element, u j is the value of the quantity at the nodes of the host
element, and the summation is over the nodes of the host element. Note that the weighting
functions themselves sum to unity. The interpolation involves all the nodes of the host element and
as such there is no regard to upwinding or the direction of information travel or wave propagation.
This is taken into account during the flux calculation for the node on the interface surface.

4.3. Flux computation

With the values of the vector of conserved variables, Q, known at the extruded sliding interface
node, the control volume for the node on the interface can now be closed and a flux computed.
Regarding the flux computation, there are several approaches that could be taken when devising
the sliding interface. One approach is to conserve the local flux at every point across the interface.
Another approach is to conserve the total or global flux across the entire interface. Yet another
approach is to compute a flux across the interface without regard to conservation. For this work,
the flux is not explicitly conserved across the interface. Note that in a discrete sense, conservation
means that all interior fluxes sum to zero and that the only remaining fluxes are the ones (spatial
and temporal) in and out of the discrete domain. The interpolation is done for both subdomain
interfaces and a flux is computed across each interface independently of the other and thus the
fluxes do not cancel at the subdomain interface and gives rise to the non-conservative aspect of
the approach.

Note that local flux conservation guarantees global conservation, but global conservation does
not guarantee local conservation. If there is a discontinuity in the flow field, then only satisfying
global conservation may not be of much use since the discontinuity may not be preserved, and so
the globally conservative and the non-conservative approaches could lead to similar results. There
is no way to impose local conservation across an interface without a fully connected interface and
the only choices are global conservation or none at all. An exhaustive set of numerical simulations,
including steady and unsteady, viscous and inviscid cases, have been performed to examine this
issue of the non-conservativeness of the interface flux and for all the cases examined thus far,
the present approach has performed well [29]. Using this approach for the flux computation,
excellent agreement has been obtained with both theoretical and experimental results. As pointed
in Reference [6], the issue with subdomain connectivity is not necessarily one of conservation, but
one of grid resolution.

Regardless of whether the flux across the interface is strictly conserved or not, a flux at the
interface must be computed, and the problem remains how to compute this flux. Different options
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exist for computing this flux. One is that the flux itself could be directly interpolated. Another is to
interpolate for the values of Q, the solution or conserved variable vector, and use these interpolated
values to compute the flux. The latter approach is used here. With the flux computed, the residual
can now be computed in order to compute a new value of Q for the next time step.

The next issue to address is how to couple the disjoint subdomains during the solution process.
During the solution process, Q and �Q are not computed explicitly for the sliding nodes. Instead,
these values are interpolated. As discussed previously, the approach proposed here is to extrude
both subdomain interfaces and form overlapping elements. The overlapping interface allows Q
for the physical nodes on one side of the interface to use information from the other side of the
interface and couples the two subdomains. The degree of coupling depends on the interpolation
frequency of Q and �Q. The interpolation for �Q is done at the end of each linear sub-iteration,
colour change, and directional sweep and the interpolation for Q is done at the end of each Newton
iteration to ensure the tightest coupling possible. By updating the interfaces during the solution
procedure in the manner described above, the values at the interfaces will be at the most current
time step and the interface values are fully implicit and the solution procedure remains fully
implicit. Updating in this manner avoids the temporal errors and numerical stability issues that can
arise due to explicit updating of the interface boundaries after the solution has been advanced to
the next time step, in which case the interface values may be lagged by the previous time step [6].

5. MODEL VALIDATION PROBLEMS

Multiple test cases have been studied to examine the effect of the sliding interface on the flow
solution in References [28, 29]. The test cases were designed to determine if discontinuities can
be maintained across the extruded interface and examine conservation across the interface. In this
paper, two test cases are presented: inviscid, supersonic flow through a diverging nozzle and an
inviscid shock tube. The first case was designed specifically to check the mass conservation. The
inlet Mach number is 1.0 and the inlet radius is 1.0 and geometry of the nozzle is such that the area
ratio of the inlet and exit result in an exit Mach number of approximately 2.0. The configuration is
shown in Figure 3. At the mid-span location, there is a spherical interface surface of radius 0.75.
The radius of the nozzle at the mid-span location is 1.15 and approximately 40–50% of the flow
passes through the interface.

Nine cases were run; the baseline case and eight cases employing the sliding interface, and the
results are shown in Table I. The mass imbalance listed in Table I is simply the difference in mass
flow between the inlet and outlet surfaces. The per cent difference listed in Table I for the sliding
interface solutions are with respect to the baseline solution, %Difference= |(Baseline − Sliding)/
Baseline|. The baseline case was run assuming steady flow for 1000 iterations beginning from

Figure 3. Supersonic, diverging nozzle configuration.
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Table I. Comparison of the mass imbalance for the diverging supersonic duct.

Solution Spherical subdomain Distance metric multiplier Mass imbalance Difference (%)

Baseline Stationary Fully connected 5.78797e−5 —
Case1 Stationary 1.00 5.78000e−5 0.138
Case2 Stationary 0.50 5.78489e−5 0.053
Case3 Stationary 0.10 5.78748e−5 0.009
Case4 Stationary 0.01 5.78793e−5 0.001
Case5 Spinning 1.00 5.64444e−5 2.48
Case6 Spinning 0.50 5.65327e−5 2.47
Case7 Spinning 0.10 5.65989e−5 2.21
Case8 Spinning 0.01 5.66135e−5 2.19
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Figure 4. Mass conservation for the rotating sliding interface case.

uniform conditions until the forces and residual remained constant. The first set of sliding interface
cases were run using the same conditions and spherical subdomain was kept stationary. Even though
the spherical subdomain is not rotating, the flow must still pass through the non-matching interface.
During construction of the first sliding grid, the spherical subdomain was rotated 45◦ about the
x-axis to ensure that the primary and secondary sliding interfaces would not align.

Three cases were used to examine the argument for keeping the extrusion close to the interface
so that the information needed to compute the flux comes from locations as close as possible to
the interface. The distance metric was decreased by a factor of 0.5, 0.1, and 0.01, respectively. It
is seen that as the extrusion distance is decreased, the mass imbalance using the sliding interface
approaches that of the fully connected baseline case. Thus keeping the extruded or overlapping
elements as close as possible to the interface can minimize the conservation errors. This is similar to
the results reported in References [6, 9] that demonstrated the interpolation errors at the subdomain
interfaces are of the same order as the truncation error of the base conservative scheme. In the limit
as the extrusion distance tends to zero, the solutions on each subdomain converge to corresponding
solutions of the baseline or fully connected solution at a second-order rate.

For the last set of sliding interface cases, the spherical subdomain was rotated 1◦ per time
step about the x-axis (the axial direction). Due to the grid movement, the simulations were run
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Figure 5. Shock tube grids for: (a) the planar interface; and (b) the curved interface.
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Figure 6. Comparison of pressure, density, and velocity for the theoretical
and computed shock tube solutions.

unsteady for nearly 25 000 iterations. Rotating cases were also run where the distance metric was
decreased, and the similar trends to the static results were observed as indicated in Table I. Steady
state conditions were achieved after approximately 9000 iterations, however the simulation was
continued to examine if the rotating sliding interface had any effect on the mass conservation.
A plot of the mass conservation time history is shown in Figure 4 for the case using the default
distance metric multiplier (1.0). A comparison of the components of the momentum flux and
energy flux were also made for each case and revealed percentage differences on the order of 0.01
and smaller.
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Figure 7. Density contours for: (a) the planar baseline; (b) the planar interface; (c) the curved baseline;
and (d) the curved interface solutions.

The second test case is an inviscid shock tube. There is no relative motion in this case, but
it was designed to see how unsteady waves pass through the interface. The pressure ratio of the
high-pressure gas (on the left of the diaphragm located at x/L = 0.5) to the low-pressure gas (on
the right of the diaphragm) was 8:1 and the density ratio is 10:1. The extent of the domain is
L × L × 0.5L and all surfaces of the shock tube are assumed to be inviscid surfaces.

Four grids were constructed, two having planar interfaces and two having curved interfaces. For
the first pair, there are two planar interfaces surfaces, one at x/L = 0.4 and the other at x/L = 0.6,
as illustrated in Figure 5(a). A second pair of grids was constructed having curved interfaces as
shown in Figure 5(b). For each pair, a baseline grid and a sliding interface grid were constructed.
In the baseline grid, the points on the interface surfaces were merged to connect the subdomains
and in the sliding interface grid, the points on the interface surfaces were not merged and the
subdomains are disjoint.

The solution for each case was run for 160 time steps using a time step of �t = 0.001. At t = 0.16,
the shock wave and contact surface have passed through the interface located at x/L = 0.6 and
the interface at x/L = 0.4 is in the middle of the expansion wave. For the first pair of grids having

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:507–529
DOI: 10.1002/fld



A SLIDING INTERFACE METHOD 521

planar interfaces, the entire wave passes though the interface at the same time. To determine if the
shape of the interface affects the waves as they pass through the interface, the second pair of grids
with curved interfaces were used. For the curved interface grids, different sections of the waves
will be pass through the interface at different times.

A comparison of the computed three-dimensional solutions to the exact one-dimensional
solution [32] is shown in Figure 6. The computed solution was taken along (x, 0.5L , 0.25L).
Note that even the baseline solution tends to smear the discontinuities. This can be resolved by
increasing the number of points in the flow direction. The key idea to note is that all five com-
puted solutions are nearly identical. The various waves were able to pass through all the different
interfaces relatively undisturbed.

Shaded density contours for each grid are shown in Figure 7. Overall, the solutions for the
sliding interfaces match the baseline results very well. The curved sliding interface exhibits the
same characteristics as the curved interface having the grid points merged on the interface. Both
slightly shift the location of the shock and contact waves as evident in Figure 7. The mass flow
across the interface at x/L = 0.4 and at x/L = 0.6 was also computed for the shock tube grids.
The maximum error for the sliding interface grids compared to the merged baseline grids was less
than 0.5%.

6. LARGE SCALE APPLICATION

The missile configuration used for the application case is shown in Figure 8. The missile has a
tangent ogive nose, cylindrical fuselage, four moveable canards, and four tail fins. The tail fins
are attached to a bearing that spins relative to the fuselage section fore and aft of it. The fuselage
has a fineness ratio of approximately 15. Yaw and pitch control is achieved using the canards.
The canards are equally spaced around the fuselage in an X -configuration relative to the plus
(+)-configuration of the tail fins. For the results presented here, the canards are deflected 16◦ and
held fixed in that orientation as shown in Figure 8. The four tail fins are located at 90-degree
increments circumferentially around the tail section and are shown in Figure 8 in a zero degree
orientation. The missile geometry also includes various geometrically complex features along the
missile fuselage. In addition, there are two railings (located at 0◦ and 180◦) that run nearly the
length of the fuselage.

The original motivation behind this simulation was to predict the aerodynamic performance of
the missile. When the canards are deflected, the resulting aerodynamic loading imparts a rolling
moment on the tail fins causing them to spin, even under steady-state flight conditions. To accurately
compute the aerodynamic performance of the missile requires that the tail dynamics be adequately
resolved. The spin-rate of the tail is a function of the canard deflection and the free-stream angle
of attack. In addition, at low angles of attack, the spin rate is also dependent upon the strength
and position of the vortices generated by the canards that convect downstream and impinge on
the tail fins. Previous results [33] describing the required grid resolution for accurate prediction of
the aerodynamic forces acting on the body and the relative importance of the viscous effects and
tail spin rate. Those results were generated using the UVI method and were found to be in good
agreement with other grid topology approaches that have been successfully applied to this same
problem: Murman et al. [34] applied a Cartesian method and both Hall [35] and Nygaard et al. [36]
used Chimera overset structured grid methods. For the purpose of this work, the results generated
using the UVI methods will serve to validate those using the new sliding interface method and
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Figure 8. Missile configuration with free-spinning tail.

comparison of these results will be made to the other topology approaches when available. The
effect of the sliding interface will be evident since the canard vortices, which have a significant
impact on the aerodynamic performance of the missile, must pass through the sliding interface in
order to impinge on the tail.

6.1. Grid construction

Body-fitted mixed-element type unstructured grids suitable for viscous simulations were generated
using AFLR [37]. Both the UVI and sliding interface volume grids were constructed using essen-
tially the same surface grids. An initial normal spacing of 5.0× 10−5 was used for all the volume
grids, which led to y+ values of less than 1.0 for the first point from the body indicating good
viscous sub-layer resolution.

Significant modifications to the geometry were required for the UVI method. Figure 9 shows
a detailed section near the tail. In order for the UVI surface to encompass the tail, the fuselage
requires two cuts for the UVI surface to pass through: one before the bearing and one immediately
after. As shown in Figure 9(a), both the railings extend underneath the tail fins and there is a very
small gap between the fins and the railings to allow the fins to pass over the railings as they spin.
To adequately resolve this small gap requires fine point spacing. However due to the memory
constraints of a single processor, the required resolution exceeds that allowed for the number of
points on the UVI surface. Recall that the UVI method is based on an inherently sequential grid
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Figure 9. (a) Original geometry near the tail section; and (b) geometric modifications to the railings
and fuselage for the UVI method.

generation reconnection process, and as such, the entire UVI surface and all volume elements
connecting to the surface must reside on a single processor. Therefore both railings were truncated
to avoid resolving the gaps and modified railings are shown in Figure 9(b). Note that part of the
stationary fuselage is now within the UVI surface and will be rotated. To counteract the effect of
this spinning surface, a rotating viscous boundary condition was applied to this surface with a spin
rate equal and opposite to that of the tail. Where the fuselage was cut to allow the UVI surface to
pass through, a blockage was defined to turn off portions of the field grid using a tapered cylinder
to represent the missing portion of the fuselage. Edges with both nodes inside the region definition
were turned off and edges with only one node inside the region were treated as viscous edges.
The UVI volume grid contains approximately 9.5M grid points.

Two grids for use with the sliding interface method were constructed. In order to make a direct
comparison with the UVI method, the first sliding interface grid is the same as the UVI grid except
that the nodes on the interface surface surrounding the tail are not merged. The second sliding
interface grid is constructed with no modifications to the fuselage or railing. The same volume grid
generation parameters were used as for the UVI grid so that the field grids would be as similar as
possible. However, extending the railings and resolving the gap between the fins and the railings
adds approximately two million nodes to the Sliding2 grid for a total of slightly more than 12M
grid points.

6.2. Simulation results

The simulations were performed using the following parameters: M = 1.6, � = 4◦, � = 0 and
2500 rpm, and ReL = 7.01 × 106 based on the missile length. This angle of attack was selected
since it was expected to have the strongest interaction between the canard vortices and the tail. The
force and moment coefficients are defined using the standard normalization by dynamic pressure.
The reference area S was taken to be the cross-sectional area of the fuselage and the reference
length c was taken as the fuselage diameter. The moments were taken about a point at x/L = 0.66
located on the centreline. Preliminary simulations were performed to determine the proper solver
parameters to ensure the unsteady solution was converged at each time step. Solutions were
obtained using time steps corresponding to 0.1◦, 0.5◦, 1.0◦, and 2.0◦ of rotation per time step, and
the nature of the problem dictated a time step no larger than 0.5◦ of rotation was necessary.

The canards generate strong horseshoe vortices that convect the length of the missile. At this
low angle of attack, the vortices are also close enough to the missile body to effect the force
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distribution on the fuselage and tail. With the asymmetrical canard deflection used here, the two
canards on the upper surface generate tip vortices rotating in a negative sense about the longitudinal
axis (or counter-clockwise if viewed from the nose looking aft). The corresponding canard root
vortices are rotating in a positive sense (clockwise) about the longitudinal axis. The lower two
canards generate clockwise tip vortices and counterclockwise root vortices. The strongest vortex is
generated by the upper port canard since it is deflected leading edge upwards and sees the largest
relative angle of attack. Due to the angle of attack and deflection of the canards, as the vortices
travel downstream they convect upwards and to the port side. By the tail section of the missile, 3 of
the 4 pairs of vortices are located in the upper port quadrant. The fourth pair, the one generated by
the lower starboard canard, impinges on the fuselage. The root vortices from the upper and lower
port canards appear to be wrapped around the stronger tip vortices as they convect downstream.

The above described vortex system leads to an asymmetrical inflow condition for the tail fins.
The asymmetry of the flow results in an asymmetrical pressure distribution on the tail fins. The
canards, which cause a starboard motion of the missile, combined with this vortex induced pressure
difference on the fins produce a positive rolling moment about the longitudinal axis and cause the
tail to spin. The direction to spin the tail was determined from the zero spin-rate case, i.e. the tail
is held fixed.

The static results for the UVI and sliding interface solutions are shown in Table II and the
roll-averaged results for the �= 2500 rpm tailspin rate are shown in Table III. There is very little
difference between the UVI and Sliding1 results. However, there is an appreciable difference
between the Sliding1 and Sliding2 results. This is due to the difference in geometry between the
two configurations, namely the additional segment of railing in the Sliding2 grid. Also included
in Table II are the results generated using the OVERFLOW-D flow solver [36]. The axial force
coefficient for the OVERFLOW-D results is omitted because it did not include the base drag.
Except for the pitching moment coefficient, there is excellent agreement with the results predicted
using OVERFLOW-D.

The time history for the rolling moment coefficient is shown in Figure 10 and the Sliding1 and
UVI results are again very similar. The differences in the Sliding2 results are due to the presence

Table II. Roll-averaged force and moment coefficients for the static case (� = 0 rpm).

Solution CA CY CN Cl Cm Cn

UVI 0.787 0.607 1.083 0.453 0.297 −6.317
Sliding1 0.788 0.607 1.085 0.454 0.289 −6.319
Sliding2 0.808 0.602 1.097 0.455 0.246 −6.344
OVERFLOW 0.607 1.06 0.483 0.439 −6.44

Table III. Roll-averaged force and moment coefficients for � = 2500 rpm.

Solution CA CY CN Cl Cm Cn

UVI 0.794 0.585 1.152 −0.119 −2.00e−2 −6.415
Sliding1 0.795 0.585 1.153 −0.119 −2.52e−2 −6.418
Sliding2 0.811 0.580 1.169 −0.119 −8.40e−2 −6.446
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Figure 10. Rolling moment coefficient for the � = 2500 rpm tail spin rate.

Figure 11. Crossflow velocity vectors near the tail for: (a) the UVI solution; and (b) the Sliding2 solution at
the �= 2500 rpm tail spin rate.

of the railing as the tail fin passes overhead. A comparison of the cross-flow velocity vectors taken
on a cutting plane in the vicinity of where the tail passes over the top railing is shown in Figure 11
for the �= 2500 rpm tail spin rate solution. Note the railing has been truncated and is no longer
present in the UVI and Sliding1 solutions. The presence of the railing causes the flow in the gap
between the railing and the fin to accelerate to nearly 45% of the free-stream value. The flow in
this region is nearly twice as fast as compared to the flow in the same region (without the railing)
in the UVI and Sliding1 solutions. Also note the UVI and Sliding1 solutions are nearly identical.

As discussed previously, the vortex interaction has a significant effect on the missile performance.
The fact that the sliding interface results are similar to the UVI results is important since the vortices
must pass through the sliding interface to interact with the tail. Thus, it appears the vortices are
passing through the sliding interface without any change in strength or position and the interface is
not having any noticeable impact on the results. As discussed before, there is very little difference
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in the Sliding1 and UVI solutions indicating little to no influence by the sliding interface. The
differences in the Sliding2 results are due to geometric differences in the grids.

A comparison of the helicity contours near the tail for each solution is shown in Figure 12. The
planes on which helicity is plotted are x/L = 0.96 and 1.05. The contours are very similar and
thus the vortices pass through the sliding interface without any additional dissipation or distortion.

6.3. Computational expense

Each solution utilized 64 processors on a Linux super-cluster. The cluster is comprised of 192 IBM×
335 nodes and uses 100Mb/s Ethernet switches for inter-node communication. Individual nodes
contain dual 3.06GHz Xeon processors and 2.5GB of RAM. The run time information is listed in
Table IV and all times are listed in seconds. Note the Sliding2 grid is significantly larger than the
other two grids yet had a shorter run time than did the UVI case. In each case, a quarter revolution
can be run in less than 9 hours and the Sliding1 case in under 5 hours. The parallel efficiency
measures are listed in Table IV. To get an idea of the percentage of time the remaining processors
are idle, the following estimate is used:

%Idle= Treconn(np − nuvi)

TTotal
· 100

where Treconn is the total time spent in the rotation and reconnection process for all UVI processors,
np is the total number of processors, nuvi is the number of UVI processors, and TTotal is the sum
of the run times for the individual processors. Note the for the sliding interface cases, nuvi is the

Figure 12. Helicity contours near the tail for: (a) the UVI solution; and (b) the Sliding2 solution at
the �= 2500 rpm tail spin rate.

Table IV. Computational expense for the free-spinning tail missile simulations.

Pts. per CPU time per Wall time per Wall time per
Grid processor time step time step 1/4 revolution

UVI 148 000 59.32 175.16 31 528
Sliding1 148 500 56.31 96.13 17 304
Sliding2 188 074 82.78 164.30 29 574
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Table V. Parallel efficiency measures for the free-spinning tail missile simulations.

Total Total
Total run communication rotation/reconnection

Grid time time time nuvi Idle (%)

UVI 2 024 804 547 898 9032 1 28.10
Sliding1 1 114 747 38 319 116 22 0.44
Sliding2 1 902 372 46 039 177 32 0.30

number of processors or partitions having sliding interface surfaces. The results are listed in Table V
and all times are listed in seconds. With just a single UVI processor, the UVI solution incurs sig-
nificantly more idle time and a correspondingly longer run time. Thus the UVI method has a longer
run time because the majority of the processors, 63 of 64, are idle during the reconnection process.

7. SUMMARY AND CONCLUSIONS

A sliding interface method has been developed for simulations involving relative rotational grid
motion. The method alleviates computationally expensive grid deformation, remeshing, and hole
cutting procedures. Rotational relative motion is accomplished by rigidly rotating a subdomain
representing the moving component. At the subdomain interface boundary, the faces along the
interfaces are extruded into the adjacent subdomain to create new volume elements and provide
a one-cell overlap. These new volume elements close the control volumes for the nodes on the
interface surface and allow a flux to be computed across the subdomain interface. An interface flux is
computed independently for each subdomain, and in doing so the method is not strictly conservative
across the subdomain interface. The values of the solution variables and other quantities for the
nodes created by the extrusion process are found by interpolation. The extrusion is done so that
the interpolation will maintain information as localized as possible. A parallel implementation of
the neighbour search is used to find the extruded points in the adjacent subdomain.

The method has been implemented in a parallel, node-centred finite volume, high-resolution
viscous flow solver. The method developed is efficient and has been shown to be faster than a
current state-of-the-art method, the UVI method, for unstructured grid applications. The method
does not impose any restrictions on the subdomain interface aside from the requirement that
the axisymmetric limitation required for rotational relative motion. The grid on the subdomain
interface can be arbitrary. The boundary surfaces between the two subdomains can have completely
independent grids from one another; meaning they do not have to connect in a one-to-one manner
and no symmetry or pattern restrictions are placed on the surface grid.

To address interface flux conservation and validate the method, numerical simulations were per-
formed for flow through a diverging duct and a shock tube. Fully-connected grids without a sliding
interface were constructed for comparison. For the diverging duct test case, the net mass flow rate
using the sliding interface was virtually identical to that for the baseline grid. It was demonstrated
that minimizing the extrusion distance helps minimize the conservation errors. Rotating the sliding
interface had no effect on the mass flow rate either. The shock tube test case showed that the
sliding interface had no adverse effect on the unsteady waves that passed through it.

The sliding interface method was also demonstrated and validated on a large-scale geometrically
complex case. The free-spinning tail missile case highlighted some of the advantages of the
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sliding interface method compared to the UVI method. The sliding interface required no geometric
modifications and had significantly shorter run times. Comparisons of the roll-averaged and time
history data were made to the UVI and OVERFLOW-D numerical solutions and excellent agreement
was found. For both the small-scale model problems and the large-scale applications, there are no
apparent adverse effects on the numerical solutions by not strictly enforcing flux conservation at
the subdomain boundary.

NOMENCLATURE

� angle of attack
�t time step
� angular velocity, rate of rotation
CA axial force coefficient
CN normal force coefficient
CY side force coefficient
Cl rolling moment coefficient
Cm pitching moment coefficient
Cn yawing moment coefficient
L reference length
M Mach number
ReL Reynolds number
Q vector of dependent variables
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